What kind of motor to choose

Update:29-01-2019
Summary:

1, choose energy-saving motor Compared with ordinary mo […]

1, choose energy-saving motor
Compared with ordinary motors, high-efficiency motors optimize the overall design, using high-quality copper windings and silicon steel sheets, reducing various losses, reducing losses by 20% to 30%, and improving efficiency by 2% to 7%. Usually 1 to 2 years, some months. In comparison, the efficiency of the high-efficiency motor is 0.413% higher than that of the J02 series motor. Therefore, it is imperative to replace the old motor with a high-efficiency motor.
2, appropriate choice of motor capacity to achieve energy savings
The state has specified the following three operating areas for three-phase asynchronous motors: the load rate is between 70% and 100% for the economic operation area; the load rate is between 40% and 70% for the general operating area; the load rate is 40%. The following are non-economic operating areas. Improper selection of motor capacity will undoubtedly result in waste of electrical energy. Therefore, using a suitable motor to improve the power factor and load rate can reduce power loss and save power.
3, using magnetic slot wedge instead of the original slot wedge
The magnetic slot wedge mainly reduces the no-load iron loss in the asynchronous motor. The no-load additional iron loss is generated in the stator and rotor core by the harmonic flux caused by the cogging effect in the motor. The high frequency additional iron loss induced by the stator and rotor in the iron core is called the pulse vibration loss. Further, the stator and the rotor tooth portions are sometimes aligned and sometimes shifted, and the tooth surface tooth cluster magnetic flux is fluctuated, and eddy current can be induced in the tooth surface line layer to cause surface loss. Pulse vibration loss and surface loss are called high frequency additional loss, which account for 70%~90% of motor stray loss. The other 10%~30% is called load additional loss, which is generated by leakage flux. Although the use of magnetic wedges will reduce the starting torque by 10% to 20%, the motor with magnetic wedge can reduce the iron loss by 60k compared with the motor with ordinary slot wedge, and it is suitable for motor modification of no-load or light-load starting. .
4, using Y / △ automatic conversion device
In order to solve the problem of waste of electric energy when the device is lightly loaded, the Y/△ automatic conversion device can be used to achieve the purpose of saving electricity without replacing the motor. Because the voltages obtained by different connections of the three-phase AC grid are different, the energy drawn from the grid is different.
5, motor power factor reactive power compensation
Increasing the power factor and reducing the power loss are the main purposes of reactive power compensation. The power factor is equal to the ratio of active power to apparent power. Usually, the power factor is low, which will cause the current to be too large. For a given load, when the supply voltage is constant, the lower the power factor, the larger the current. Therefore, the power factor is as high as possible to save power.
6, winding motor liquid speed control
The liquid resistance speed control technology is developed on the basis of the traditional product liquid resistance starter. Still achieve the purpose of stepless speed regulation by changing the size of the plate spacing adjustment resistor. This makes it have good starting performance at the same time, it is energized for a long time, which brings about heating and heating problems. Due to the unique structure and reasonable heat exchange system, the working temperature is limited to a reasonable temperature. The liquid resistance speed control technology for winding motor is quickly promoted due to its reliable operation, convenient installation, large energy saving, easy maintenance and low investment. It is not required for some speed regulation accuracy, and the speed regulation range is not wide. Winding type motors with infrequently adjustable speeds, such as large and medium-sized wound-type asynchronous motors such as fans and pumps, have significant liquid speed control effects.